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Abstract. In this paper, we propose a new multi-task, deep learning
architecture for malware classification for the binary (i.e. malware versus
benign) malware classification task. All models are trained with data
extracted from dynamic analysis of malicious and benign files. For the
first time, we see improvements using multiple layers in a deep neural
network architecture for malware classification. The system is trained
on 4.5 million files and tested on a holdout test set of 2 million files
which is the largest study to date. To achieve a binary classification error
rate of 0.358%, the objective functions for the binary classification task
and malware family classification task are combined in the multi-task
architecture. In addition, we propose a standard (i.e. non multi-task)
malware family classification architecture which also achieves a malware
family classification error rate of 2.94%.

1 Introduction

PandaLabs recently reported that 27% of all of malware detected by their an-
tivirus engine was first encountered in 2015 [16]. Malware authors continue to
accelerate the automation of malware production using techniques such as poly-
morphism at an alarming rate. Clearly, automated detection employing highly
accurate malware classifiers is the only option to combat this problem long term.

Recently, deep learning has led to significant improvements in diverse areas
including object recognition in images [14] and speech recognition [8]. Broadly
speaking, deep learning is a branch of machine learning which includes algo-
rithms that learn a distributed feature representation of a training set using a
neural network architecture composed of multiple non-linear hidden layers. For
supervised deep learning algorithms where the training set includes labels, a
deep learning classifier such as a deep neural network (DNN) can be trained to
predict the label of unseen examples. DNNs are typically considered to be neural
networks composed of two or more hidden layers while a neural network with



a single hidden layer is known as a shallow neural network. Given the impres-
sive vision and speech results, it is important that malware researchers explore
different deep learning models to hopefully discover improved architectures for
detecting malware.

Given the potential repercussions of installing malware on a corporate or
personal computer, there have been many proposed solutions for automated
malware classification [10]. Recently, researchers have been attempting to use
deep learning models to improve malware classification. In 2013, Dahl et al. [7]
first studied deep learning for malware classification in the context of dynamic
analysis, and their best single neural network architecture has an error rate
of 0.49%. Their architecture consists of a random projection layer to reduce
the high dimensional (179 thousand) sparse binary input feature vector to a
4000 dimensional dense feature vector suitable for training a neural network.
The authors found that adding a second and third hidden layer to the neural
network did not improve the overall accuracy compared to a shallow architecture.
Pascanu et al. [20] recently proposed a two component, dynamic analysis system
for malware classification including a lower-level recurrent model, which learns
a feature representation for API events, and a higher-level, potentially deep,
classifier which uses the output of the recurrent model as features. The authors
proposed eight different recurrent models, based on variants of either a recurrent
neural network or an echo state network, and some of these models did learn a
better representation for the input sequence compared to a bag of words model or
a collection of trigrams. Similar to [7], the authors found that adding additional
layers to the classifier again did not improve the overall accuracy presumably
due to the small training set size of 65 thousand samples. Saxe and Berlin [21]
proposed a static malware analysis classification system which consists of a two
hidden layer DNN where the features are derived from the structure, including
elements from the header, of a Windows portable execution (PE) file. However in
this paper, the authors do not compare the results for their DNN with a shallow
neural network or a DNN with more than two layers so we do not know if deep
learning improves their classification rate.

While deep learning has achieved state-of-the-art classification results in
speech recognition and visual object recognition, no one has been able to demon-
strate any gains for deep learning applied to malware classification. In this paper,
we propose MtNet, a new deep learning malware classification architecture which
shows for the first time that deep learning offers a modest improvement compared
to a shallow neural architecture. To achieve these results, MtNet includes several
improvements over Dahl’s architecture. Multi-task learning encourages the hid-
den layers to learn a more generalized representation at lower levels in the neural
architecture. Our architecture also employees rectified linear unit (ReLU) activa-
tion functions and dropout for the hidden layers. ReLU activations and dropout
were also used in [20] and [21], but the effects of these components were not an-
alyzed. In our work, we study the contributions of these components and show
that ReLU activation functions cut the number of epochs needed for training a
binary malware classifier in half while dropout leads to significant reductions in



the test error rate. When trained and tested on a dataset consisting of 6.5 million
files these modifications allow MtNet to achieve a binary malware error rate of
0.358% and family error rate of 2.94% beating the previous best architectures
by 26.17% and 19.21%, respectively. Contributions of our work include:

1. We propose and implement a novel multi-task neural network malware classi-
fication architecture. This architecture leads to modest gains for deep learn-
ing with a detection threshold of 0.5 where a file is predicted to be malware if
the probability that file is malicious exceeds the probability that it is benign.

2. We conduct a deep learning study on an extremely large dataset trained
with 4.5 million files and test the model with an additional 2 million files.

3. We demonstrate that dropout significantly reduces the error rate for both
shallow and deep neural architectures.

4. We show that rectified linear activation functions allow a binary neural net-
work model to be trained in half the number epochs compared to sigmoid
activation functions which were used in previous work.

2 Deep Learning

To better understand deep learning, we next provide background on several
key concepts. Figure 1 depicts a typical deep neural network architecture. A
DNN usually consists of an input layer followed by several hidden layers and an
output layer. The input layer consumes an input feature vector representing the
object to be classified. The output layer is responsible for producing the class
probability vector associated with the input vector. In total, the deep neural
network predicts the class for the input vector.

Output Layer

Prediction

Input Vector 

Multiple Hidden Layers

Input Layer

Deep Neural Network

Fig. 1. A standard feed forward, deep learning architecture.



Hidden Units and Activation Functions: The basic component in a
neural network is the hidden unit. A hidden unit takes an n-dimensional feature
vector x = [x1, x2, · · · , xn] from the input vector or the lower-level hidden units,
and outputs a numerical output yj = f(

∑n
i=1 wjixi + bj) to the hidden units in

higher layers or the output layer. For hidden unit j, yj is the output, bj is the
bias term, while wji are the elements of a layer’s weight matrix. The function
f(·) is often referred to as the activation function which determines the hidden
unit’s output. The activation function introduces non-linearities to the neural
network model. Otherwise, the network remains a linear transformation of its
input signals.

Hidden Layers: A group of m hidden units forms a hidden layer which out-
puts a feature vector y = [y1, y2, · · · , ym]. Each hidden layer takes the previous
layer’s output vector as the input feature vector and calculates a new feature
vector for the layer above it:

yn = f (Wnyn−1 + bn) (1)

where yn, Wn, and bn are the output feature vector, the weight matrix, and
the bias of the nth layer. Proceeding from the input layer at the bottom of
the DNN in Figure 1, each subsequent higher hidden layer learns a more com-
plex and abstract feature representation which captures higher-level structure.
The underlying idea of adding multiple layers is that these layers correspond to
improved levels of abstraction or composition of the observed data.

Input and Output Layers: The lowest level of a deep neural network
which receives the original feature vector is known as the input layer. The orig-
inal feature vector is passed to the hidden layers from bottom to top and is
transformed into a fixed-dimensional vector that the final layer can process. The
final layer, which interacts with and presents the processed data, is called the
output layer. The behaviour of the output layer depends on the problem we are
solving. For example, in a classification task, the output layer transforms the
last hidden layer’s activation into a probability distribution that estimates the
input sample’s class. So far we have introduced the most basic components and
concepts in deep learning. Next we consider deep learning’s ability to improve
the model’s feature representation.

Feature Representation Learning: One of the promises of deep neural
networks is that the model reduces the need for feature engineering. Instead,
deep learning provides a way to automatically extract more complex, higher-
level features derived from simple lower-level features. For example, in the case
of object recognition of transportation vehicles in images, the lowest-level in-
put layer consumes the raw pixel information from an image. The first hidden
layer usually learns a set of edge-like features. Then, the second layer learns to
combine the lower-level features from the first hidden layer to produce a slightly
richer set of features. In our image recognition example, features extracted at
higher levels might represent different types of components from the vehicles
such as a door, wing, tire or handle bars. Finally, the output layer fine tunes the
final classification based on the object labels allowing the system to distinguish
between a car, an airplane, a motorcycle, and so on.



3 MtNet System

Figure 2 depicts the high-level overview for training the MtNet system and eval-
uating unknown files with the trained model. The top row provides the steps
required for identifying the selected features and training the MtNet model,
while the bottom row indicates the process for evaluating an unknown file given
a set of selected features and the trained MtNet model. For training, raw data
is extracted from labeled files during dynamic analysis by a modified version of a
production anti-malware engine. Unlike in-depth emulation executed on a fully
capable virtual machine (VM) such as Anubis [4], the anti-malware engine used
in this study only provides lightweight emulation of the operating system and
tries to coax the file into execution. Since anti-malware engines are designed to
quickly scan unknown files for viruses, many more files can be evaluated with
this method than using full VMs. Once the raw data has been collected from
the labeled files for the training set, feature selection training is performed to
produce the final sparse binary features (File Extracted Features) required for
training MtNet. Next, the MtNet model is trained for two tasks including bi-
nary classification which predicts whether an unknown file is malicious or benign
and 100-class family classification which predicts if the file belongs to one of 98
important families, a generic malware class, or the benign class. In our data,
analysts provide labels for tens of thousands of individual malware families.
However, they selected 98 families for the family classifier based on their sever-
ity and prevalence of infection. Files in the long tail belonging to the remaining
families are assigned to the generic “Malware” class. All legitimate files belong
to the “Benign” class. After training, the Selected Features are then used to re-
strict the features extracted by emulating unknown files and these File Extracted
Features can then be evaluated by the trained MtNet model. The MtNet bi-
nary prediction score is used to automatically classify the unknown file as either
malicious or benign. Likewise the family classifier attempts to assign a specific
family label to the unknown file. We next consider some of these steps in more
detail.
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Labeled
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Data
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Fig. 2. High-level overview of MtNet training and unknown file evaluation.



Dataset: We were provided a large corpus of labeled, raw data by analysts
from the Microsoft Corporation which was extracted from 6.5 million files. We
believe this is the largest dataset used in a published malware classification study.
Among this data collection, 2.85 million examples were extracted from malicious
files and 3.65 million from benign files. The set of malicious files contained 1.3
million belonging to the 98 malware families and 1.55 million from the generic
malware class. We randomly selected 4.5 million examples for training and 2.0
million for a hold out test set. All of the samples were scanned with a single
combination of the anti-malware engine software and signature set. This dataset
allows us to measure the performance of our system without introducing noise
from varying anti-malware engine and signature set updates. Malicious files are
labeled by professional analysts and anti-malware engine detections. The benign
file collection is used in a production environment to prevent false positives by the
anti-malware engine and was obtained either directly from legitimate companies
or downloaded from verified web sites.

Features: Much research in the area of malware classification has focussed
on improved feature generation. The underlying strategy is that malware experts
handcraft potentially complex features using domain knowledge which hopefully
leads to better overall classification performance. Deep learning takes the oppo-
site approach and instead tries to learn the distributed feature representation
from the raw input data. Just as in object recognition which learns from the raw
pixels, we use low-level features extracted from dynamic analysis of the file as
input for training.

For each executable file which is emulated by the anti-malware engine, two
sets of raw information are extracted: a sequence of application programming in-
terface (API) call events plus their parameters and a sequence of null-terminated
objects recovered from system memory during emulation. A large percentage of
malicious files are packed. During the unpacking process, null-terminated objects
are often written to system memory by the malware. We find that the majority
of the null-terminated objects are indeed unpacked strings but a few correspond
to individual code fragments.

For the API and parameter stream, we use a many-to-one mapping to repre-
sent the API events. In the Windows software environment, there are multiple
APIs which can be used to achieve the same objective. For example, three dif-
ferent ways to create a file include calling the CreateFile() method from user
mode, the ZwCreateFile() method from kernel mode, or the fopen() call from
C. All three of these create file API calls are mapped to a single higher-level
CreateFile event. In total, there are 114 such high-level API events in our data.

Three sets of sparse binary features are derived from the two data sources.
A sparse binary feature is set if the feature is present in the data; we do not
use feature counts in MtNet to prevent missed detections due to attackers poly-
morphically varying the number of critical features. The presence or absence
of the null-terminated objects are used directly as one of the feature sets. Two
additional feature sets are derived from the API and parameter stream. The
first feature set is derived from each unique combination of high-level API event



and one individual input parameter setting. As a result, several sparse binary
features are generated from each API call. The second feature set consists of tri-
grams of API events. An API trigram event feature is generated by the unique
combination of three consecutive API events. A trigram feature provides a small
amount of context for each central API call.

Feature Selection: The combined feature set consisting of null-terminated
tokens, API event plus parameter value, and API trigrams contains millions of
potential features. In order to reduce the input space so that it can be classified
by a deep neural network, we perform feature selection using mutual informa-
tion [17] to generate features that best characterize each class. The output of the
feature selection process is a ranked set of 50,000 features which is input to the
MtNet system. The 50,000 features are initially selected during training. Later,
these features are applied when evaluating an unknown file.

4 Multi-Task Neural Malware Classification

Figure 3 depicts the architecture of the proposed deep, multi-task malware clas-
sification model. We seek to use the features described in the previous section to
identify whether unknown files are malicious or benign. We also want to classify
the malicious files into different malware families with 100 classes.

Softmax Output Layer (2)

Sparse Binary Input Vector 
(50000)

Random Projection
(50000 -> 4000)

Multiple Hidden Layers
(ReLU, Dropout)

(2000, 2000, 2000, 2000)

Input Layer
(4000)

Deep Neural Network

2-Class Labels 100-Class Labels

Softmax Output Layer (100)

Fig. 3. Proposed deep model for multi-task learning.



4.1 Random Projections

After feature selection, the dimension of the input feature vector is reduced to
50,000. However, training a neural network with such a large input dimension is
still computationally prohibitive. To overcome this problem, this original input
feature vector must be projected to a lower dimensional subspace which then
serves as the input vector to the neural network. Dahl et al. [7] experimented with
principal component analysis (PCA) but were only able to project the original
data down to 500 dimensions due to its O(N3) computational requirements.
Therefore to further reduce the data size to a suitable dimension for the neural
network’s input layer, we use the random projection technique [15] which is also
used in [7]. The core idea of random projections, which has been shown to work
well in practice [15], is that a sparse matrix that is randomly initialized can
be used to project the original input feature vector to the reduced dimension
subspace. The sparse random projection matrix R is initialized with 1 and -1 as

Pr(Ri,j = 1) = Pr(Ri,j = −1) =
1

2
√
d

(2)

where d is the size of the original input feature vector. For MtNet, the dense,
projected feature space of the random projection is reduced to 4,000 as in [7].
With d = 50,000 in our model, R is highly sparse and includes 0.22% of its values
set to 1 and another 0.22% of its values set to -1. The remaining 99.56% of the
values in the sparse, random project matrix have an implied value of 0.

4.2 Deep Neural Network

We next train a deep feed-forward neural network from the projected features for
malware classification. The network architecture is identical to that described in
Section 2 with the following details.

Normalized Input: Before inputting the feature vectors to the deep neu-
ral network, we first normalize the input vector so that every dimension has
zero mean and unit variance. The normalized input makes the network training
converge faster.

ReLU: The sigmoid activation function, used in [7], and the tanh activation
function typically exhibit the vanishing gradient problem which makes the deep
neural networks hard to train [9]. To overcome this problem, we use the rectified
linear unit (ReLU) activation function for each layer. The ReLU function is
defined as:

f(γ) = max(0, γ) (3)

for any input value γ. It not only solves the vanishing gradient problem but
also accelerates the convergence of stochastic gradient descent compared to the
sigmoid and tanh activation functions.

Dropout: Dropout [24] is a regularization technique proposed for training
deep neural networks. The core idea is that when updating a hidden layer, the
algorithm randomly chooses not to update (i.e. “dropout”) a subset of the hidden



units. The intuition for dropout is that when randomly zeroing out hidden units
in a layer, the network is forced to learn several independent representations of
the patterns with identical input and output. In our model, we use dropout for
all hidden layers of the neural network.

Loss function: The deep neural network learns different feature represen-
tations at each layer. The output layer implemented with the softmax function
is used to output the categorical probability distribution. In our case for binary
classification, the output is two dimensional representing malware and benign,
while for the family classification task, the output size is 100 representing the
different malware families, the generic malware class, and the benign files. To
fine tune the deep model, we use the cross entropy loss function to quantify the
quality of the neural network’s classification results. The cross entropy loss is
defined as

LC(θ(x)) = −
∑
c∈C

gc(x) log θc(x) (4)

where x is the input feature vector, c is the class, C is the collection of classes to
predict, θ(x) is the probability distribution output by the deep neural network,
and g is the ground truth distribution.

Multi-Task Learning: In order to improve the generalization of the deep
model, we train both the 2-class classification output and the 100-class classifica-
tion output together with the same neural network. The multi-task model shares
the same feature learning in the hidden layers, while the two top-level output
softmax layers project these learned features into 2- or 100-dimensional vectors
to calculate the probability distribution for each task. We define the multi-task
loss function to be a weighted sum of each of the individual loss functions,

LM (θ(x)) = α1L2(θ(x)) + α2L100(θ(x)) (5)

where the multi-task weights are α1 and α2, and α1+α2 = 1.0. The two tasks are
trained simultaneously with mini-batch stochastic gradient descent and back-
propagation, and the gradients at each layer are updated with respect to the
weight of each task.

5 Experimental Results

In this section, we evaluate the performance of our multi-task MtNet model,
along with several baseline models, and seek to answer several questions about
malware classification with deep learning including the following. Does adding
additional hidden layers in a deep neural network improve binary and family
classification? Do larger datasets allow deep learning to help improve malware
classification accuracy? How do the various deep learning components affect the
classification accuracy? Can we improve detection rates at extremely low false
positive rates?

We implemented all models in this section, including the baseline system
proposed in [7], using the computational neural toolkit (CNTK)[1]. The sparse,



binary feature vectors for each file are extracted as described in Section 4. For all
neural network models, we fix the input layer size to 4,000 and the hidden layer
size to 2,000 for all layers. We choose the input layer size to match [7], whereas the
hidden layer size is chosen by hyper-parameter tuning. The mini-batch size for
stochastic gradient descent (SGD) is set to 300 samples, and the initial learning
rate for mini-batch SGD is initialized to 0.01. The momentum of the gradient
update is set to 0.9 to avoid getting trapped in a local minimum. We dynamically
adjust the learning rate during training. If the loss does not drop after the current
epoch, we reload the previous epoch’s model, halve the current learning rate, and
retrain the model for this epoch. After each epoch, the entire dataset is shuffled
so that the data samples in each mini-batch are randomly selected. We train each
model until convergence but no more than 200 epochs. Each model is trained and
tested on a single NVIDIA Tesla K40 GPU. To evaluate the MtNet model, we
report the test error rate which is defined as the ratio of misclassification in the
entire test dataset. During test, an unknown file is predicted to belong to each
class represented in the softmax layer. For binary classification, a file is predicted
to malicious if P (c = malware|x) ≥ P (c = benign|x) which corresponds to a
detection threshold of 0.5 in Tables 1 and 3. In addition we also plot the receiver
operating characteristic (ROC) curves of different models.

5.1 Comparison of the Baseline and Single-Task Baseline Models

Before investigating the performance of the multi-task MtNet model in the next
section, we first evaluate the test error rates for a hold out test set on two
baseline architectures for both binary and malware family classification. Tables 1
and 2, respectively, summarize the results of our best single-task deep models
compared with the baseline method proposed in [7]. For reference, the second
column presents the test error rates in [7] for up to three hidden layers originally
evaluated using their implementation and dataset. The third column presents the
results from our re-implementation of their architecture in CNTK and trained
and tested with our new dataset. The number of epochs required for training to
converge is listed in column 4. It should be noted that our CNTK implementation
of Dahl’s previously proposed models is independent and provides confirmation
of their earlier results. In the final two columns, we present the results for the
single task baseline versions of the MtNet model depicted in Figure 3 trained
and tested with our dataset. For example, the single-task baseline model for
binary classification, whose results are found in Table 1, only includes the top
left softmax output layer. Similarly the single-task malware family classification
model, whose results are listed in Table 2, only uses the righthand softmax output
layer. Both of these baseline models employ rectified linear units and dropout.

Comparing the results for Dahl’s model in [7] with our implementation of
their model for binary classification in Table 1, we see that the best performing
baseline model in our implementation uses three hidden layers compared to one
in the original study. Several factors changed between these two experiments.
The training and test set sizes were essentially doubled, the number of features
and families both decreased, and the underlying implementation was completely



changed. In addition, only family-based models were trained in [7], and the bi-
nary classification results were computed based on whether or not the predicted
family was malicious or benign. In this study, the 2-class models were trained
with the true binary labels. It is interesting that the lowest test error rates for
the two implementations are essentially identical (i.e. 0.49% for their implemen-
tation and 0.4845% for ours). In addition to the hidden layer size, this single-task
version of MtNet differs from [7] in two aspects: the sigmoid activation function
is replaced with the rectified linear activation function and dropout is included.
For both binary and family classification, our single-task models significantly
improve the baseline classification results by 23.98% and 19.21%, respectively.
These results indicate that switching to the ReLU activation function and adding
dropout help the deep model to learn a better feature representation of the file
for classification. In both tables, we also show the number of epochs needed to
reach convergence. We found that although adding dropout to the hidden layers
generally increases the number of required training epochs, ReLU accelerates
the convergence of the mini-batch stochastic gradient descent process for binary
classification. Compared to sigmoid activation functions, rectified linear activa-
tion functions significantly reduce the number of iterations required for training
a binary classifier.

Baseline Model Baseline Model Single Task Model
(Original Results [7]) (Our Data) (Our Data)

Layers Test Error(%) Test Error(%) Epoch Test Error(%) Epoch

1 0.49 0.5906 190 0.3711 64
2 0.50 0.4882 186 0.3702 82
3 0.51 0.4845 200 0.3686 77
4 0.4934 200 0.3683 81

Table 1. Comparison of two implementations of the baseline model versus our best
single-task baseline model on 2-class binary classification.

Baseline Model Baseline Model Single Task Model
(Original Results [7]) (Our Data) (Our Data)

Layers Test Error(%) Test Error(%) Epoch Test Error(%) Epoch

1 9.53 3.633 152 2.935 124
2 9.55 3.652 70 2.983 130
3 9.74 3.715 96 2.982 122
4 3.795 96 2.970 146
Table 2. Comparison of two implementations of the baseline model versus our best
single-task baseline model on 100-class family classification.



5.2 Multi-Task Results

Table 3 compares the test error rates for the multi-task models with their single-
task counterparts. Using hyper-parameter tuning, we set the weights for the
binary classification task to α1 = 0.8 and for the family classification task to α2 =
0.2. We observe that for binary classification, classifiers trained with the multi-
task models consistently improve the error rate. However, the multi-task, family
classification models perform worse than the single-task variants. Compared to
the baseline results shown in Table 1 and Table 2, we observe that both classifiers
obtain significant improvements. While the family test error rate remains at
2.935% with a 19.21% improvement compared to the baseline result, the multi-
task binary test error rate drops further to 0.3577% with a relative improvement
of 26.17%.

2-Class 100-Class
Test Error(%) Test Error(%)

Layers Multi-Task Single-Task Multi-Task Single-Task

1 0.3657 0.3711 2.935 2.935
2 0.3577 0.3702 3.025 2.983
3 0.3618 0.3686 3.026 2.982
4 0.3655 0.3683 3.070 2.970

Table 3. Test error rates for multi-task training vs. single-task training on 2-class and
100-class classification.

In Figure 4, we compare the ROC curves at very low false positive rates
with α1 = 0.8 and α2 = 0.2. Although we do see some improvement in Table 3
for binary classification by adding additional layers, the 1- and 2-layer networks
offer comparable performance for very low false positive rates.

In Figure 5, we compare the ROC curves for binary classification for the
single-task model with two different MtNet models using α1 = 0.8 and α1 =
0.9. All models have a single hidden layer. This figure indicates that the multi-
task MtNet model outperforms the single-task model at very low false positive
rates; including the family classification task helps regularize the neural network
model to learn better feature abstractions for binary classification.

5.3 Model Parameter Contributions

We perform hyper-parameter tuning on two additional parameters in MtNet, the
dropout rate and the multi-task mixing weight, and measure their contribution
to the MtNet model test error.

Dropout Rate: Figures 6 and 7, respectively, show the test error rates for
binary and family classification with different dropout settings. It is clear that
dropout is the main contributor to the improvement in classification accuracy
in both cases. The best dropout setting for binary classification is 0.25, where
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Fig. 4. ROC curves for the best performing multi-task MtNet at very low false positive
rates.

MtNet is able to learn a better feature representation with more hidden lay-
ers. Although the 0.25 dropout rate also improves the family classification test
error rate significantly, adding more hidden layers fails to learn better feature
representations for this task.

Multi-Task Weight: We next vary the multi-task weight corresponding to
binary classification task α1, in (5), and measure its impact on MtNet’s binary
classification error rate in Figure 8 and family classification error rate in Figure 9.
From Figure 8, we observe that as α1 increases, the test error decreases until
α1 = 0.8 for all models. Whereas in Figure 9, we observe that the error rate
of the family classification models generally increases as α1 increases. Note that
setting α1 = 1, in the multi-task model, is equivalent to the single-task binary
classification model, and setting α1 = 0 corresponds to the single-task family
classification model. These two figures show that multi-task learning favors the
task with the larger weight. In summary when α1 = 0.8, multi-task modelling
significantly improves the binary classification result with the help of the family
class labels.

5.4 Dataset Size and Deep Learning

Based on the published results, we believe this is the largest malware classifica-
tion experiment run to date. We essentially doubled the number of training and
test samples compared to [7]. However compared to the results reported in [7],
our CNTK implementation of the baseline model shows similar test error rates.
In addition, although we found modest gains by increasing the number of layers
in MtNet in the case of 2-class binary classification, we did not find significant
improvements using deep learning compared to other domains such as object and
speech recognition. As a result, we do not believe that adding even more sam-
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Fig. 6. MtNet test error rates for binary classification with different dropout rates of
0.5, 0.25, 0.1 and without dropout.

ples to our training set will enable deep learning to offer significant performance
increases for the dynamic analysis features investigated in this study.

5.5 Training and Testing Efficiency

An important aspect of training large-scale neural network architectures is the
training and testing efficiency. Table 4 presents the time required to train and
test the large-scale MtNet multi-task, deep neural networks for up to four layers.
These times are listed in (hours:minutes). The reason that the training times are
similar for the 3 and 4 layer networks is because the 3 layer network trained for
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Fig. 7. MtNet test error rates for family classification with different dropout rates of
0.5, 0.25, 0.1 and without dropout.
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Fig. 8. MtNet test error rates for 2-class classification with different values of the multi-
task learning weight α1.

181 epochs before the early stopping criterion halted training while the 4 layer
network only required 144 epochs. The most time consuming aspect of training
and testing the system is the extraction of the data which required approximately
2 weeks on a single computer.

6 Discussions

We now discuss several aspects of our proposed MtNet multi-task, neural clas-
sification system and then consider how attackers may attempt to evade its
detection.
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Fig. 9. MtNet test error rates for 100-class classification with different values of the
multi-task learning weight α1.

Layers Training Time Test Time

1 06:58 01:34
2 12:34 02:09
3 18:08 02:41
4 18:12 02:32

Table 4. Training and test times required in (hours:minutes) for evaluating up to four
layers in the MtNet DNN malware classifier.

Achieving improvements using deep learning for malware classification is ex-
tremely challenging. The primary issue is that the classification accuracy for
a neural network architecture with millions of files is already so good that it
is difficult for additional layers to offer significant performance increases. For
example, the best accuracy from the previous large-scale malware classification
study [7] for a single neural network with one hidden layer is 99.51%. Figure 4
indicates that the ROC curves for this dataset are beginning to approach the
ideal classifier. Although we do find some gains in Tables 1 through 3, there is
not much room for significant improvement in the binary classification results
by including additional hidden layers. In contrast, the detection error rates for
object recognition and speech recognition were much higher prior to the signifi-
cant improvements using deep learning. However, this study confirms that using
other types of algorithmic techniques from the deep learning literature, such as
dropout and rectified linear unit activation functions, can further improve the
test error rate of a neural network malware classifier.

Even though it is somewhat disappointing that we cannot obtain significant
improvements in malware classification using deep learning, this result has a
major benefit. Shallow networks can evaluate unknown files more quickly because
the computational complexity for each hidden layer is O(H2) where H is the



size of the hidden layer. As a result, we can scan more files with a shallow neural
network than with a DNN.

All of the samples were analyzed at the same time with the same version
of the anti-malware engine. Thus we expect the performance to be worse when
analyzing new samples in a production setting where the anti-malware engine
and its signatures are updated frequently.

As with many other malware detection systems, MtNet is susceptible to
attacks and can be evaded. MtNet relies on dynamic analysis of a PE file. As
such, the well known anti-emulation attack where the malware detects that it
is being emulated and halts any malicious activity [3] will prevent MtNet from
detecting the malicious file. In addition, MtNet is also vulnerable to the recently
reported attack for deep neural networks proposed by Papernot, et al. [19]. In
this attack, the authors construct adversarial samples and demonstrate that all
ten digits in the MNIST database can be altered in such a way as to confuse
a DNN classifier thereby producing any other digit. This attack is based upon
computing the forward derivative of the DNN evaluated at the proposed initial
input sample. Given this attack, the MtNet classifier should not be run on the
client computer where the parameters of the DNN can be recovered by reverse
engineering. However assuming a secure machine learning infrastructure with no
intrusions, MtNet can still be run on the backend to evaluate unknown files.

7 Related Work

Previous research most closely related to the MtNet system broadly falls into
two main areas, deep learning and automated malware classification.

Neural networks have been explored for over three decades. Deep learning has
recently become popular in many areas such as computer vision [14] and speech
recognition [8]. Training deep models was not practical until the recent growth
of computational power and large datasets. Newly proposed techniques such as
dropout [24], and rectified linear units [18] solved several problems such as over-
fitting and the vanishing gradient problem. The multi-task learning approach [6]
has recently gained popularity among deep learning models. It usually leads to
a better primary task model when training simultaneously with other related
tasks. Multi-task learning has been adapted in several applications such as text
recognition [11] and speech recognition [23].

Given the problems associated with stolen credentials and data exfiltration,
malware classification has been an active research area since 1994. Idika and
Mathur [10] present a good overview of malware classification. Kephart et al. [12]
were the first to use neural networks for malware classification. Later important
malware classification studies include the works by Schultz et al. [22] and Kolter
et al. [13] . Random projections were first proposed for malware classification by
Atkinson [2].

A few researchers have started to explore deep learning architectures for
malware classification. Dahl et al. [7] proposed a simple feed-forward neural net-
work with random projections [15] to learn from a selected feature set extracted



from the executable files. Dahl’s shallow neural architecture is the current best
performing malware classification model in terms of binary and family classifi-
cation accuracy, but the deep models fail to improve the classification accuracy
in their study. Our proposed model is closely related to Dahl’s architecture [7].
We utilize multi-task learning and recent deep learning techniques which allow
our deep model to outperform their model. Benchea and Gavrilut [5] combine
a Restricted Boltmann Machine (RBM) with a One-Sided Perceptron for de-
tecting malware. Their study is quite large consisting of over 1.2 million files
although only 31,507 are malicious. An RBM is an unsupervised method for
learning a stochastic neural network. It learns one set of weights from an input
layer to a single hidden layer. Dahl et al. [7] found that pre-training their neural
network classifier with an RBM slightly degraded the performance. Recurrent
neural networks and echo state networks have been used to analyze executable
files to identify malware [20]. However, recurrent models are computationally
expensive when trained with many files and long sequences. Finally, a static
analysis-based DNN was proposed by Saxe and Berlin [21].

8 Conclusions

In this paper, we propose and implement several different binary and family
malware classifier architectures. The best binary classifier employs multi-task
learning for the binary and family malware classification tasks. In particular,
multi-task learning improves the classification results for extremely low false
positive rates under 0.07%. The best performing two-class, binary classification
architecture in Table 3 uses two hidden layers and multi-task learning while a
shallow, multi-task network performs best for family classification. These results
are achieved using rectified linear unit activation functions and dropout. Includ-
ing dropout is the key to the majority of the accuracy improvement compared
to Dahl’s architecture, and rectified linear units reduce the number of epochs
required for training by almost half. Given these results, we believe that training
neural network architectures with millions of files offers the best overall perfor-
mance for malware classification.
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